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The sensor virus is a serious threat, as an attacker can simply send a single packet to compromise the entire

sensor network. Epidemics become drastic with link additions among sensors when the small world phenomena occur.

Two immunization strategies, uniform immunization and temporary immunization, are conducted on small worlds of

tree-based wireless sensor networks to combat the sensor viruses. With the former strategy, the infection extends

exponentially, although the immunization effectively reduces the contagion speed. With the latter strategy, recurrent

contagion oscillations occur in the small world when the spatial–temporal dynamics of the epidemic are considered. The

oscillations come from the small-world structure and the temporary immunization. Mathematical analyses on the small

world of the Cayley tree are presented to reveal the epidemic dynamics with the two immunization strategies.
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1. Introduction

Recent years have seen the deployment of wireless

sensor networks (WSNs) in a variety of applications,

including habitat and environmental monitoring,[1]

precision agriculture, security surveillance,[2] etc. Sen-

sors are being deployed in more and more efficient

ways. Tree topology is a kind of architecture that

is frequently used, and is ubiquitous in the deploy-

ment of wireless sensor nodes. Some routing pro-

tocols, topology control algorithms, and aggregation

schedules of wireless sensor networks are helpful for

constructing tree-based networks.

The DQT (distributed quad-tree) is an in-network

tree framework, which achieves distance sensitivity

and resiliency for event-based querying, and greatly

reduces the cost of complex range querying.[3] The

HAA (hybrid address assignment scheme) uses a tree

address structure to make the proposed scheme less

susceptible to the physical distribution of the WSN

devices.[4] The SCT (semantic/spatial correlation-

aware tree) has a simple, scalable, and distributed

tree structure that addresses the practical challenges

in the context of aggregations in the WSNs.[5] With

this structure, the total cost of the aggregation tree

can be minimized. The LEMA (localized energy-

efficient multicast algorithm) uses a function to lo-

cally estimate the energy-efficient paths to multiple

the destinations.[6] It is able to deal with the inher-

ent errors of the WSNs. Several tree-based protocols

based on MST (minimal spanning tree)[7] have also at-

tracted much attention recently. The BCDCP (base-

station controlled dynamic clustering protocol) intro-

duces an MST to connect cluster heads and adopts

an iterative cluster splitting algorithm to choose clus-

ter heads or form clusters.[8] It distributes energy dis-

sipation evenly among all sensor nodes to improve

the network lifetime and average energy saving. The

CTPEDCA (cluster-based and tree-based power ef-

ficient data collection and aggregation protocol for

WSNs) is based on a clustering and MST routing

strategy for cluster heads, which uses the MST to im-

prove the transmission routing mechanism among the

cluster heads so that only one cluster head commu-

nicates directly with the faraway base station in each

round.[9] Most tree-based protocols use multi-hop tree

topologies, which are famous for energy saving in data

gathering and transferring.

Compared with the regular computer systems, it

is even easier for the sensors to be compromised by
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virus attacks. Sensor nodes in the same network are

homogeneous in both hardware and software. They do

not have complicated hardware architectures or oper-

ating systems to protect against attacks due to cost

and resource constraints. In this research, we only

consider viruses like sensor worms. If a sensor worm

attacks a network, the epidemic propagates rapidly

from one side to another. Yang et al. studied the

worm propagation in a wireless sensor network and

considered the propagation as a random process in a

random network.[10] De et al. investigated the poten-

tial disastrous threat of node compromise spreading

in a wireless sensor network.[11] They focused on the

possible epidemic breakout based on a random net-

work. In routing protocols, topology control algo-

rithms and aggregation schedules, the random graphs

cannot completely indicate the structure characteris-

tics of wireless sensor networks. In tree-based net-

works, random link additions among nodes occur in-

evitably for the use of omnidirectional antennae. Ob-

stacles, adjustments of radio energy, joins of new mem-

bers, and errors of location precision all incur link

additions. In this paper, small-world phenomena[12]

existing in the tree-based wireless sensor networks are

studied. Due to the shortcuts in small worlds, the

epidemic propagation becomes more drastic in the

network. The immunization is one of the most com-

mon strategies for combating the outbreak of sensor

viruses. The epidemic dynamics and the immuniza-

tion strategies are analyzed in the small world of the

tree-based wireless sensor network.

The small-world phenomena were first investi-

gated in sociology, where individuals were often linked

by a short chain of acquaintances. Duncan pro-

posed an alternative model for the small-world phe-

nomena by using the graph theory.[13] Recent re-

search has shown that the small-world phenomena are

ubiquitous in nature, society, and technology. Small

worlds are also observed in wireless networks.[14,15]

Some researches have been conducting studies on the

dynamics of epidemic propagations on small-world

networks.[16−18] Developing strategies for controlling

the dynamics of epidemics as they spread through

complex population networks is now a field of great

concern.[19−23] Stone et al. studied the relative ef-

fects of vaccinations and avoidances of infected indi-

viduals in a susceptible–infected–recovered (SIR) epi-

demic model on a dynamic small-world network.[23]

Da Gama and Nunes studied the effect of the net-

work structure on the immune models for life dis-

eases and found that in addition to the reduction

of the effective transmission rate, spatial correlations

might strongly enhance the stochastic fluctuation.[24]

Stone and Livak–Hinenzon analyzed the recurrent os-

cillations occurring in the small-world networks.[25]

Li et al. studied the short message spreadings in

complex networks.[26] Song and Jiang proposed an

epidemic-spreading model for networks with nodes of

different anti-attack abilities and edges of nonuniform

transmission.[27] The success of an infectious disease

to invade a population is strongly dependent on the

population’s specific connectivity structure.

Our research focuses on the immunization strate-

gies for combating epidemic propagations on small

worlds of tree-base wireless sensor networks. The uni-

form immunization procedure, which consists of the

random distribution of immune individuals, is con-

ducted in the small world. The infection extends ex-

ponentially although the uniform immunization effec-

tively reduces the propagation speed. If we consider

the spatiotemporal state of the epidemic and conduct

the temporary immunization on the small world, os-

cillation waves are found in the network. Oscillations

come from the small-world structure and the tempo-

rary immunization.

The rest of the paper is organized as follows. Our

small-world model and the basic ideas are described in

Section 2. Two immunization strategies and the math-

ematical analyses are presented in Section 3. Numeri-

cal simulations are presented in Section 4. The paper

is concluded in Section 5.

2. Small-world model

We consider a two-dimensional network composed

of N nodes. All nodes are symmetric with similar

properties, including range of radio coverage, energy

of battery, etc. The nodes are randomly distributed in

the network. The small-world model proposed in this

paper starts with the regular tree abstract, the Cayley

tree, and link additions are then added to construct

a small-world network. In the Cayley tree, each node

hasK nearest neighbors, K ≥ 2. There are N−1 links

between the nodes in the Cayley tree. If p is defined

as the average number of shortcuts per bond (link)

on the underlying tree, there are p(N − 1) link addi-

tions and (p+ 1)(N − 1) links altogether in the small

world. The proposed abstract neglects the actual dis-

tance information, which simplifies the problem and

represents a spatial graph model. Figure 1 shows small

worlds of tree-based networks and our proposed small-

world model. In the figures, the circles denote nodes
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in the wireless sensor network, the rectangle denotes

the base station collecting data from the network, the

black lines denote bonds, and the dashed lines denote

link additions in the small worlds. The actual dis-

tance information is neglected, and the bonds only

describe logical links in the small world. The small

world of a SCT[5] is shown in Fig. 1(a). The small

world of a MST[7] is shown in Fig. 1(b). The Cayley

tree with link additions is shown in Fig. 1(c), in which

each node has three nearest neighbors, K = 3. The

following mathematical analyses of two immunization

strategies are presented on the Cayley tree with link

additions, which reveals the two immunization pro-

cesses for combating epidemic propagations.

(a) (b) (c)

Fig. 1. Small worlds of (a) SCT, (b) MST, and (c) the Cayley tree with link additions.

Traditionally, networks of complex topologies

have been described with the random graph theory

and the regular graph theory. The random graph is

used for depicting the network topology in the ran-

dom graph theory, in which two nodes are connected

with a random probability. If all nodes are randomly

movable or they flood messages under no rule, then

the random graph is suitable for depicting the net-

work topology. The mean-field theory is used to ana-

lyze the virus propagations on the random network.[10]

The network has a fixed deployment structure in the

regular graph theory. The virus propagation on the

regular topology is a standard percolation problem.[28]

Our proposed small-world abstract has a hierarchical

tree-based structure with random connections occur-

ing between nodes, which describes the complex dy-

namics of the wireless sensor networks. If some nodes

are movable, and most nodes are unmovable in the

network, random connections occur in the hierarchi-

cal topology. The small-world abstract describes the

hybrid structure perfectly. As we have analyzed, ob-

stacles, adjustments of radio energy, joins of new mem-

bers, and errors of location precision all incur in the

small world. The small-world phenomenon is one ba-

sic characteristic of the wireless networks.

3. Immunization strategies

In network G, S(t), I(t), and R(t) are the nodes

in the states of susceptible (S), infectious (I), and im-

mune/recovered (R) at time t, respectively. We know

that S(t) + I(t) + R(t) = N . Let St, It, and Rt

be the proportions of susceptible, infective, and re-

covered nodes in the network at time t, respectively,

we have St + It + Rt = 1. We can partition the in-

fected nodes in the network into I(t0), I(t1), I(t2), . . .

at time t0, t1, t2, . . ., respectively. With the uniform

immunization, I(t+1) contains more nodes than I(t)

if the infected nodes attack their neighbors in each

time unit. The I(t) increases rapidly with time t as

the epidemic spreads on the network, although the im-

munization reduces the propagation speed. With the

temporary immunization, I(t) increases or decreases

periodically with time t if the ratio of the infectious

period τI to the immune period τR is suitable. Short-

cuts are uniformly added besides the inherent edges

in the original tree topology with the average degree

⟨k⟩ = (1 + p)K. If node i is susceptible, and it has ki
neighbors, of which kinf are infected. Then, node i will

become infected with probability kinf/ki. It is noted

that i will become infected with probability 1 if all

its neighbors are infected. Besides this parameter-free

mechanism, there may be other reasonable choices.

For example, if the susceptible has a probability h of

contagion with each infected neighbor, its probability

of infection becomes [1− (1− h)kinf ].

3.1.Uniform immunization

We now analyze the epidemiological process with

the uniform immunization, which is used frequently in
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homogeneous small-world networks. We assume that

there is only one infected node in the initial stage,

ρ is defined as the fraction of immune nodes present

in the network, and the remaining nodes are suscep-

tible (healthy). The immune nodes cannot become

infected or transmit the infection to their neighbors.

The infected nodes only attack their nearest suscep-

tible neighbors in each time unit. During the prop-

agation, the understratum plays a key role and is an

essential factor considered in the immunization strate-

gies. Two sources contribute to the number of infected

nodes, one is the susceptible neighbor nodes on the

underlying topology, and the other is the susceptible

nodes reachable via the shortcuts.

Following the above description, I(t) can be cal-

culated by

I(t) =
t∑

t′=0

(1− ρ)ha(t′)[1 + 2ξ−1I(t− t′)], (1)

where a(t′) is the number of attacked neighbors on

the underlying topology, h is the infection probabil-

ity, and ξ is the average distance between the ends of

shortcuts, ξ = N
(N−1)p . For mathematical analyses of

epidemics on the small world, three cases are consid-

ered. If a(t′) is a constant CK , the epidemiological

process is considered, and

I(t) =
t∑

t′=0

(1− ρ)hCK

[
1 + 2p

N − 1

N
I(t− t′)

]
. (2)

The sum can be approximated by an integral

I(t) =

∫ t

0

(1− ρ)hCK

[
1 + 2p

N − 1

N
I(t− t′)

]
dt′

= (1− ρ)hCKt+
2p(1− ρ)hCK(N − 1)

N

×
∫ t

0

I(t′)dt′. (3)

The first-order derivative with respect to t can be ob-

tained as

dI(t)

dt
= (1−ρ)hCK+

2p(1− ρ)hCK(N − 1)

N
I(t), (4)

and the solution is obtained as

I(t) =

[
1 +

N

2p(N − 1)

]
e

2p(1−ρ)hCK (N−1)t

N

− N

2p(N − 1)
. (5)

With N → ∞,

I(t) =

(
1 +

1

2p

)
e2p(1−ρ)hCKt − 1

2p
. (6)

We can see that the number of infected nodes in-

creases exponentially with t, and the result coincides

with that on the ring topology.[13] When I(t) = N , all

nodes are infected, we obtain the threshold

tc ≈
N

2p(1− ρ)hCK(N − 1)
ln

2pN(N − 1) +N

2p(N − 1) +N
.

In fact, a(t′) has more complex mathematical

forms when the viruses spread on the underlying

topology. If a(t′) = CKt′ , I(t) can be calculated

as

I(t) =
t∑

t′=0

(1− ρ)hCKt′
[
1 + 2p

N − 1

N
I(t− t′)

]
=

∫ t

0

(1− ρ)hCKt′
[
1 + 2p

N − 1

N
I(t− t′)

]
dt′

= (1− ρ)hCK

∫ t

0

t′dt′

+
2p(1− ρ)hCK(N − 1)

N
t

∫ t

0

I(t′)dt′

− 2p(1− ρ)hCK(N − 1)

N

∫ t

0

t′I(t′)dt′. (7)

Both sides are differentiated with respect to t, we ob-

tain

dI(t)

dt
= (1− ρ)hCKt+

2p(1− ρ)hCK(N − 1)

N

×
∫ t

0

I(t′)dt′. (8)

The second-order derivative with respect to t can be

obtained as

d2I(t)

dt2
= (1− ρ)hCK

+
2p(1− ρ)hCK(N − 1)

N
I(t). (9)

It is a second-order linear differential equation, and

can be solved as

I(t) = C1 e

√
2p(1−ρ)hCK (N−1)

N t

+C2 e
−
√

2p(1−ρ)hCK (N−1)

N t − N

2p(N − 1)
, (10)

where C1 and C2 are two constants. There is only

one infected node in the network at t = 0, i.e.,

C1 + C2 = 1 + N
2p(N−1) .

With N → ∞,

I(t) = C1 e
√

2p(1−ρ)hCKt

+C2 e
−
√

2p(1−ρ)hCKt − 1

2p
, (11)

and C1 + C2 = 1 + 1
2p .
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The infected parent node may attack all its chil-

dren nodes in each time unit, a(t′) = CK(K − 1)t
′
,

then

I(t) =

t∑
t′=0

(1− ρ)hCK(K − 1)t
′

×
[
1 + 2p

N − 1

N
I(t− t′)

]
=

∫ t

0

(1− ρ)hCK(K − 1)t
′

×
[
1 + 2p

N − 1

N
I(t− t′)

]
dt′

= (1− ρ)hCK

∫ t

0

(K − 1)t
′
dt′

+
2p(1− ρ)hCK(N − 1)

N
(K − 1)t

×
∫ t

0

(K − 1)−t′I(t′)dt′. (12)

Let F (t) = (K − 1)t
∫ t

0
(K − 1)−t′I(t′)dt′, and differ-

entiate both sides with respect to t, we obtain

F ′(t) = ln(K − 1) · F (t) + I(t). (13)

From Eq. (12), we can rewrite I(t) as

I(t) = (1− ρ)hCK

∫ t

0

(K − 1)t
′
dt′

+
2p(1− ρ)hCK(N − 1)

N
F (t). (14)

Then,

F (t) =
N

2p(1− ρ)hCK(N − 1)
I(t)

− N

2p(N − 1)

∫ t

0

(K − 1)t
′
dt′. (15)

Differentiate both sides with respect to t, we have

F ′(t) =
N

2p(1− ρ)hCK(N − 1)
I ′(t)

− N

2p(N − 1)
(K − 1)t. (16)

From Eqs. (13), (15), and (16), we obtain

I ′(t)− (1− ρ)hCK(K − 1)t

= ln(K − 1)

[
I(t)− (1− ρ)hCK

∫ t

0

(K − 1)t
′
dt′

]
+

2p(1− ρ)hCK(N − 1)

N
I(t). (17)

The second-order derivative with respect to t can be

obtained as

I
′′
(t) =

[
ln(K − 1) +

2p(1− ρ)hCK(N − 1)

N

]
I ′(t).

(18)

It can be solved as

I(t) = C3 exp

([
ln(K − 1)

+
2p(1− ρ)hCK(N − 1)

N

]
t

)
+ C4, (19)

where C3 and C4 are two constants. At t = 0, there

are CK infected nodes in the network, i.e., C3 +C4 =

CK .

With N → ∞,

I(t) = C3 e
[ln(K−1)+2p(1−ρ)hCK ]t + C4, (20)

and C3 + C4 = CK .

The uniform immunization is equivalent to the

removal of individuals from the relevant population.

It reduces the effective average number of neighbors

per node and slows down the propagation. From the

above analyses, we can see that although different epi-

demiological processes occur on the underlying tree

topology, the total number of infected nodes increases

exponentially with the uniform immunization. The

presence of the immunization will effectively reduce

the prevalence speed by a factor (1− ρ).

3.2.Temporary immunization

The success of the epidemic to invade a network

is strongly dependent on the network’s specific con-

nectivity structure. We are interested in a further

theoretical understanding of the spatial–temporal dy-

namics of the epidemic on the small world of tree-

based networks. A period of temporary immunization

is conducted on the node after it is infected, which

is then removed after an intrinsic time delay. As a

result, recurrent propagation oscillations of infection

occur in the network. The epidemic cycles arise be-

cause of the delayed susceptible–infectious–recovered–

susceptible (SIRS)[24] process. In the SIRS process,

the susceptible nodes become infected, recover with

the temporary immunization, but return to the sus-

ceptible state when the immunization wears off.

The state of the node at the (i, j)-th location of

the lattice, xij(t), can be S, I, or R. The following

rules guide the state transitions:
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xi,j(t) ∈ S →

 xi,j(t+ 1) ∈ I, with probability 1− (1− h)k
i,j
inf (t)(t),

xi,j(t+ 1) ∈ S, otherwise,
(21)

xi,j(t0) ∈ I → xi,j(t0 + 1) ∈ I → · · · → xi,j(t0 + τI) ∈ R

→ xi,j(t0 + τI + 1) ∈ R → · · · → xi,j(t0 + τ0) ∈ S, (22)

where h is the infection probability, ki,jinf(t) is the total

number of infectious contacts of the node at time t, t0
is the initial time, τI is the time period that a node

remains infectious, and τR is the period that a node

remains immune. We assume that τI = 1, the propor-

tion of recovered nodes can be described by the sum
τ0−1∑
i=1

It−i, and St can be calculated as

St = 1− It −
τ0−1∑
i=1

It−i, (23)

where τ0 = τI + τR. For the homogeneous small-world

abstract, the number of infected neighbors of each

node is the sum of the number of neighbors on the

underlying topology and that of the nodes connected

with shortcuts, which at time t are ItK and ItpK,

respectively.

Let hK be the probability that such a node is in-

fected by a neighbor in a given time step. Let hp be

the probability that such a node is infected by a node

connected with the shortcut. Then the spread of the

epidemic can be described with the following model of

the SIRS dynamics:

It+1 = [1− (1− hK)ItK(1− hp)
ItpK ]St

= [1− (1− heff)
ItK ]St, (24)

where heff is defined as

1− heff = (1− hK)(1− hp)
p. (25)

Equation (24) captures both the time delay dynamics

resulting from the temporary immunization of the in-

fection and the effects of the shortcuts. The recurrent

propagation oscillations relay on the infection, the re-

covery, and the reinfection of the nodes in the small

world. The shortcuts of the small world and the tem-

porary immunization each play an important role in

this procedure.

4. Simulations

Simulations of epidemic propagations with immu-

nizations on small worlds are presented in this section.

We study the time evolutions of the infected numbers

in small worlds of SCT and MST by using a large num-

ber of experiments assuming that there is a portion of

nodes infected in the initial stage. We assume that

node i is susceptible, and it has ki neighbors, of which

kinf are infected. Then, node i will become infected

with probability kinf/ki. The network is conducted

with the uniform immunization or the temporary im-

munization. The epidemiological behaviors with the

immunizations are studied when the small-world phe-

nomena occur. The propagations based on mathemat-

ical analyses are also presented in this section. The

simulations show that the mathematical analyses re-

veal the dynamic characteristics of the epidemic prop-

agations with the two immunization strategies.

4.1. Simulations of the uniform immu-

nization

Epidemiological behaviors with the uniform im-

munization are studied when the small-world phenom-

ena occur in the tree-based networks. Figures 2(a) and

ρ=0.05
ρ=0.15
ρ=0.30

ρ=0.05
ρ=0.15
ρ=0.30

(b)

t/s

I
↼t
↽

0 10 20 30 40

(a)
2000

1600

1200

800

400

0

t/s
0 10 20 30 40

I
↼t
↽

2000

1600

1200

800

400

0

Fig. 2. Time evolutions of the infected numbers on the

small worlds of (a) the SCT and (b) the MST with p = 0.3

and N = 2000.

2(b) show the time evolutions of the infected numbers

with the uniform immunization on small worlds of the
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SCT and the MST, respectively. There is only one in-

fected node in the initial stage. The parameters from

Refs. [5] and [7] are used in Fig. 2. The epidemics

spread exponentially with the uniform immunization

in most time on the two small worlds. In the late

stage, the exponential evolution process experiences a

decline due to the reduction of the remaining suscepti-

ble nodes in the network. The infected number keeps

increasing until all nodes are infected in the network.

The simulations show that the larger the immuniza-

tion factor ρ is, the slower the speed of prevalence is.

The uniform immunization reduces the effective aver-

age number of neighbors for each node and slows down

the propagation.

The following simulations depict the epidemiolog-

ical propagations with the uniform immunization on

the small world of the Cayley tree based on the mathe-

matical analyses. For a(t′) = CK , a certain number of

nodes are attacked on the tree-based topology in each

time unit. Due to the shortcuts, the infection extends

exponentially with t, as shown in Eq. (5). The dura-

tion of each time unit is 10 seconds. Figure 3(a) shows

the time evolution of the infected number in the epi-

demiological process. From the figure, we can see that

the speed of the infection decreases as ρ increases. At

t = 43 s, the infected number in the network is 950

for ρ = 0.05, 511 for ρ = 0.15, and 201 for ρ = 0.3.

For a(t′) = CKt′, C1 and C2 can be approxi-

mately calculated at t = 0 s and t = 10 s. The du-

ration of each time unit is 10 seconds. Figure 3(b)

shows the time evolution of the infected number in

the epidemiological process. At t = 53 s, the infected

number in the network is 924 for ρ = 0.05, 657 for

ρ = 0.15, and 377 for ρ = 0.3.

For a(t′) = CK(K − 1)t
′
, C3 and C4 can be ap-

proximately calculated at t = 0 s and t = 10 s. The

duration of each time unit is 10 seconds. Figure 3(c)

shows the time evolution of the infected number in

the epidemiological process. At t = 32 s, the infected

number in the network is 778 for ρ = 0.05, 520 for

ρ = 0.15, and 279 for ρ = 0.3.
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Fig. 3. Epidemiological propagations on the small world of the Cayley tree with p = 0.3, h = 0.8, CK = 3, K = 3,

and N = 1000. The time evolutions of the infected number are shown for (a) a(t′) = CK , (b) a(t′) = CKt′, and (c)

a(t′) = CK(K − 1)t
′
.

Table 1. Infected numbers with the uniform immunization.
PPPPPPPa(t′)

ρ
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

CK 160 129 103 83 66 53 43 34 27

CKt′ 61 56 50 45 40 36 32 28 25

CK(K − 1)t
′

518 430 356 294 242 199 163 133 108

Table 1 shows the numbers of infected nodes at

t = 30 s with p = 0.3, h = 0.8, CK = 3, K = 3,

and N = ∞ for different ρ. Although the uniform

immunization reduces the prevalence speed, the to-

tal number of infected nodes increases exponentially.

The larger the immunization factor ρ is, the slower the

speed of the prevalence is.

4.2. Simulations of the temporary immu-

nization

The epidemiological behaviors of sensor worms

with the temporary immunization are investigated in

the following simulations. Figures 4(a) and 4(b) show

the time evolutions of the infected numbers with the

temporary immunization on small worlds of the SCT

and the MST, respectively. The parameters from
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Refs. [5] and [7] are used in Fig. 4. The recurrent waves

are observed both spatially and temporally. The peri-

odicity of the wave comes from the small-world struc-

ture and the temporary immunization, the reinfection

of the recovered nodes after a certain time delay in-

troduced by the temporary immunization in the SIRS

procedure.

t/s

(b)

(a)
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↽

1200
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200

t/s
300 400 500 600 700

I
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↽

Fig. 4. Time evolutions of the infected numbers on the

small worlds of (a) the SCT and (b) the MST with p = 0.9

and N = 2000.

Figure 5 depicts the recurrent oscillations of

the spatio–temporal epidemiological behaviors on the

small world of the Cayley tree based on Eq. (24). In

the simulations, 2000 nodes are distributed randomly

in the network, and 10% nodes are infected in the ini-

tial stage. A certain number of neighbors (K = 4) are

connected directly with each node on the tree-based

topology, and pK shortcuts link it with the other ones

with p = 0.4. The spread of the prevalence is af-

fected by the infection probabilities hK = 0.35 and

hp = 0.12. In Fig. 5(a), τI = 1 and τR = 8, while in

Fig. 5(b), τI = 1 and τR = 6. The simulations lead

to a better understanding of the epidemic spread with

the temporary immunization. The infection probabil-

ities hK , hp and the average number p of the short-

cuts per bond have great influences on generating the

long-term cycles. The periodicity of the waves is the

outcome of both the small-world structure and the

temporary immunization. The reinfection at the cen-

ter of the wave after a certain amount of time is due to

the shortcuts and the intrinsic time delay introduced

by the temporary immunization. On the other hand,

the ratio of time period τI to time period τR has a

great influence on generating the long-term cycles. In

Fig. 5(b), the number of infected nodes remains a con-

stant after t = 260 s. It is the outcome of both the

small-world structure and the temporary immuniza-

tion. An equilibrium is reached between the reinfec-

tion and the infection due to the intrinsic time delay

introduced by the temporary immunization. The pe-

riodic waves based on the mathematical analyses coin-

cide with the recurrent propagation oscillations of epi-

demics in the small worlds of the SCT and the MST.

300
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100 140 180 220 260 300

t/s

(b)
200

160

120

80
50 100 150 200 250 300

(a)

I
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I
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↽
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Fig. 5. Epidemiological propagations with the temporary

immunization on the small world of the Cayley tree. The

time evolutions of the infected number are shown on the

small world of the Cayley tree for (a) τI = 1 and τR = 8

and (b) τI = 1 and τR = 6.

5. Conclusion

Compared with the regular computer systems, it

is even easier for the sensors to be compromised by

virus attacks. The sensor worm propagates rapidly

from one side of the wireless sensor network to another

side. Due to the link additions, the small-world phe-

nomena occur, and the epidemic propagation becomes

more drastic. Developing strategies to control the dy-

namics of epidemics as they spread is now a field of

050205-8



Chin. Phys. B Vol. 21, No. 5 (2012) 050205

great concern. Two immunization strategies, the uni-

form immunization and the temporary immunization,

are conducted on small worlds of tree-based wireless

sensor networks to combat the sensor viruses. De-

tailed mathematical analyses are presented to reveal

the epidemic propagations with the two immunization

strategies. With the uniform immunization, which

consists of the random distribution of immune indi-

viduals, the infection increases exponentially although

the immunization effectively reduces the propagation

speed. With the temporary immunization, recurrent

contagion oscillations occur in the small world when

the spatial–temporal dynamics of epidemics are con-

cerned. The oscillations come from the small-world

structure and the temporary immunization.
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